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THEORETICAL STUDY OF CAMBER FLUTTER CHARACTERISTICS OF
MONOCOQUE AND MULTIWEB WINGS

By ROBERT (r. THO.MSON and EDWIN T. "[_RUSZEWSKI

SUMMARY

:1 theoretical flutter anal!Ixi.s has been made tltat

utilizes the same simplified model employed in the

vibrational investigation, prexented i_ TN D 987 in

which ehordwise aml ._panwi._e flexibilities of the

actual .wiT_g are duplicated. This idealized model

subjected to a ._uper._onie flow is im'e._'tiyated to

predict the flutter behavior and establish a flutter

boundary. Additional effects such as aerodynamic

clamping and cariatiol_.._ in eross-seetiolml eurmture
are determined and their effect o_ the predicted

flutter boundary aseertai_ed. A comparison of the
predicted flutter boundary with results obtained

experime_tally .for multiweb wing ,_truetures shows

very good agreement.

INTRODUCTION

In an experimental investigation conducted by

the Langley Structures Research Division into the

dynamic flutter failures of multiweb wing struc-
tures, chordwisc or camber flutler was found to t)e

a primary mode of fidlure when insufficient bulk-
beads were used. This flutter consisted of small-

amplitude oscillations with five or less spanwise
node lines across the chord. ]n the investigation a

series of multiweb wing structures were tested in

the preflight jet of the NASA Wallops Station at a
M_wh number of 2 as discussed in references 1, 2,

and 3. Additional tests h_ve also been made in

the Langley 9- t) 3, 6-foot thermal structures tunnel
at a Math nun/bcr of 3, and these flutter data are
inchlded also. Ttiese multiwcb nlodels tiitxl

5-percent-thick circular-arc airfoil sections con-
taining six webs and a solid leading aim trailing

edge. In attempts to predict this flutter behavior

theoretically, modal approaches using the lowest

five experimenta.1 mode shapes have not been very
successful. Vibration behavior of such structures,

however, has been successfully predicted theo-

retically (for example, ref. 4) by the use of an

amdysis of a simplified model whMt took cogni-
zance of the cross-sectional flexibilities. Hence,

the s_me idealized model subjected to a supersonic

flow has been investig_tcd in an attempt to obtain
a method of predic.ting the flutter behavior of tim

multiweb wings. D. g. Johns, in a note on the

influence of panel deformations on wing flutter

(ref. 5), also recognized tile significance of cou-

pling between cross-sectional _md spanwise defor-
mation modes. This analysis, however, was

applica.blc only to wings with rectangular cross
sections and consequently did not include any
effects of curvature of the cross section.

The purpose of the present paper is to present

the results of a flutter analysis of the idealized
structure and to show how these results can be

used to predict the flmter behavior of multiwcb

and monocoque low-aspect-ratio wings of circular-
arc cross section. The idealized structure consists

of a typical cross section of the wing mounted

on springs and hence embodies the principal
mechanisms of the cross-sectional ,md spanwise

tlexibilities of the actual wing. A modified linear

piston theory is used to represent the aerodynamic

forces created by supersonic flow. The analysis
consists in solving the basic equations by means of

a Galerkin procedure using a modal approximation

of three and four terms but neglecting the effect of

aerodynamic damping. The accuracy of this

Galerkin procedure is determined in two ways--

first, by the apparent convergence of the results
of the three- and four-term solutions and second,

by a comparison of the flutter boundaries for the
case of the idealized struciurc with infinitely stiff

spring supports (pin-ended) at the leading and
tra.iling edges as cah'ulatcd by the Galcrkin method
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with those obtained from an exact analysis. In

addition, tile effects <)f damping are evaluated by a
two-mode Galerkin solution that includes the

effecls of aerodynamic damping. Finally, the

results of the analysis are used to predict suc-

cessfully the flutter bounda W of the multiweb

wings used in t he experimental investigat ions.

SYMBOLS

B 3 "_1.
2 qc' i<o-<_jEfllaU=

c chord length of beam

E moduhls of elasticity
h distance from x-axis to median line of

skin

he value of h at .r--0

[ area moment of inertia about median

line of skin, per unit length, t3,/12

Iv area polar moment of inertia per unit

length, /_+ lvv
j, I integers

k spring constant
21I Maeh numlmr

m roots of auxiliary equation (see ap-
pendix)

I
dynamic pressure, 2 P_U_2
skin thickness

free-stream velocity
amplitude of deflection in z-direction

(positive upward)

deflection in z-direction, Re(we ;_,)
Cartesian coordinates (fig. 1)

frequency eoelTwieni, \ l_dC i. ]

A

_ti(, r

X

Y,

#
2x

c

P

P_

T

,b=z2 i I

assumed coefficients of the roots of

the exact equation (see eqs. (A9) of
appendix)

dynamic-pressure parameter, P2fl _t a
erRieal vahte of A

amplitude of normal midplane force

in llte beam (posit ire in tension)

norm,,ll midplaue force, Re(Xd <_)
Poisson's ratio

mass density of ('over

mass density of air (free stream)
t |me

CO

Subscripts:

l'_ 1)% /9

S
T

$, ?J, Zt r

Primes and

feren/tat|on

nat m'al frequency

ant |symmetrical

any integer
<Vmmetrical
torsional

variahle wilh respect to which printary
sylnbol is differentiated

superscript IV on symbols denote dif-

with respect to (.

ANALYSIS

IDEALIZED STilUCTURE

A rigorous approa(-h to the flut let analysis of the

niultiweh wing Shown in figure 1 (a) would, of

necessity, involve some type of shell analysis and

sophisticated aerodyn'mfies, A lnore convenient

ihougii less rigorous approacii is to illvestigate an

idealize<l structure identical tO thal used in the

vibrillion analysis of reference 4. Tile only sll'tie-

lures considered iil'e lhose thai ]lave relatively uni-

form properties in the spanwise direction with a
doubly synmletrieal curved airfoil cross section as

s|lo_am in figure l(a). The wing or beam is iis-
sumed to he of either pin'o monoeoqlle or mull|web

cross section with no or relatively few internal ribs.

The idealized slruelui'e consisls of li l.vpieal cross

section of llie vcing lnounted on idenlival ehisiie

supports as shown in figure 1(h). The cross see-
lion consists of two curved llnifornl beains ill-

lathed lit the ends in such a nlanner as to niainlain

tim angle between the beams at each end. Tile

rigid-lm<ly motion of tile idealized slruclure de-

pends Oil the stiffness of tim ('laslic sllppol'ls which

simulate tile bean| bonding and torsional stiffness

of the vdttg. The depth of the individual beams
in the idealized structure is taken to be tile same

as the thickness ! of tile covers in tilt, prototype.

The curvature of the covers of the wings consid-

ered is stieh as can be represented by the parli-
holic equation h=ho(l--_) wllere h0 is the nmxi-

nulnl vahie of h and _ is tile nondiulensional ¢.o-

or(tinale 2x/c.
Tile webs of the mull|web slruct lire are assumed

to contribute nothing to tim calnber stiffness.

They do, however, tend to prevent ali,y rellilive

nlotion between tile lop and bottOlil covers. Thus,
lhe addiliona] assuniplion is inade thai the defh, c-

lions of the lop and bottonl bellnls in tile idealized

Stl'tlcltll'e ill'e tim sallle, Eaeli heain o[ the ideal-

ized st l'tll,1 tire is permit led I o citrl'3 lnid pla lie forces
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where

U+ free-stream velocity

q dyn'unic pressure, 2p_{ _"

[3 compressibility factor, _F-- 1

and the subscripts x and r denote differentiation
with respect to x and r. The midplane force _,,

,ts in referenee 4, was assumed constant over dw

length of the beam (for any finite r) and an inle-

gral expression for-X was arrived at 1)y the as-

sumption that no overall shortening or lengthening
of the beams was possible. Thus,

___t ['"_ l_/x (5)
-- C ,/-c/2

Airflow

(b}

1

k

c
2

(a) Prototype.

(b) Idealization.

FIGURE I.- Low-aspect-ratio multiweb wing.

in adtlition to transverse shear forces and bending

moments and is considered to be acting in a man-
ner consislent wilh elementary theory (i.e., plane

seeiions remain plane). The air loads to wlfich

the idealized structure are subjected are taken as

those given by modifie<l linear piston theory.

Note that when _ is antisymmetrical, the inte-

grand of equation (5) is an anlisymmetrical
function at)out the midchord (x=0); consequently,

its integral from --e/2 to c/2 is zero and no mid-
plane forces are present. This is not true for the

symmetrical case.
The <tifferential equation and associated boun-

dary conditions are similar to equations (9) lo (13)
of reference 4 except that terlns are included on

the right-hand side of equation (1) to represent
the air loads given by modified linear piston

theory (modified in the sense that 1/:1[ is replaced

by 1/fl). The firsl term on the right-hand side
of the modified-piston-theory equation (1) is a

static-loading term and the second an aero-

dynamic damping term. The solulion of equa-

tion (l) can be written in the form

_--Re [w(x)e'='] (6)

GOVERNING EQUATIONS

The appropriate differenlial equation and

boundary conditions for the idealized strut'lure

shown in figure l(b) for the deflection )7' are

2</ 2q
ElK .... --Xh_ + pt¥,=---_ _-- _, (1)

p

, - k

(2)

(a)

-X=Re [Xe"°q (7)

From equations (6) and (7) it. can be seen that
stable motion is assured as long as the imaginary

part of the frequency _ is zero or positive. Itence,
the flutter boundary is ilefined as the lowest

wdue of q at which the iron,nat3." part of any w

becomes negative and therefore in the ensuing

analysis only real wtlues of o0 are considered.
Substituting equations (6) and (7) into equation

(1) and the associated boundary condRions, using
ttm parabolic equation h--h0(1--_ 2) together

wilh I i-2' and nondimensionalizing yields

m¥_:_-9_:+ _ w : :__= 0 (4)
aXhod (8)

wW+Aw'q B4w=. Et 3
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I! Ifu t_._--w f_:_,=0 (9)

.... 6hoXc_ 3k(e)_ I

,,,. 6hoXd 3 z. (.;) 3 =o (11)

where the primes and tile superscript, 137 denote
2x

differentiation with respect to _=--, and i is a
c

dynamic-pressure parameter defined as

3q

A frequency parameter/-¢ is defined as

B 4:.3 qc 4
2 E_t3u_ i_-c_ (1.3)

. 3C4pw2
<_'=-- (14)

4Et +-

and

equation and boundary conditions are identical to

1hat given in reference 7 for an infinite-aspect-
1

ratio plate (with tile exception of a factor of --
1--.u 2

resulting from tile use of tile plate stiffness D in

the panel analysis and E[ in the beam analysis).

If the aerodynanfic damping is neglected, the

last term in equation (1) is omitted and the ex-

pression for B 4 given by equation (13) reduces to

--a 4. The solution to this differential equation

and boundary conditions is discussed in tile ap-
pendix. In the appendix it. is shown that the de-
flection w can be written as

6Xhod
w=_+ eo_(Q eosh ¢¢+ Q sinh ¢¢)

+e-°+(C_ cos _¢+C4 sin _) (16)

where the relations between ¢, _, a4, andS0 are given
t) 5' the following equations:

A
4,2=--0 z-- (17)

40

X 2Et [,l , , 4Etho 1 wd()h w d_=-- d (--_w_ q- _'=72 .L, . _,

(15)

EXACT SOLUTION

An exact solution to equation (1) in which aero-

dynamic damping has been neglected is obtained

in this section. The approach is simihu' to that

used ill reference 6, which presents an exact solu-

tion for panel flutter of a simply supported 1)late.
Although solutions of the flutter of the idealized

structure considered in this section are possfl)le for

any value of spring constant k, only the special

case of infinite k is presented. This approach re-

sults in considerable simplification ill boundary
conditions and consequent numerical procedures;

for example, the solutions are not (lependent on

values of c/t or E. Although considerably simpli-

fied, the solution still provides a means of evalu-

ating the effect of curw_ture and its associated
normal mldplane force X on flutter behavior.

These are tile prineil)al effects that distinguish the

present analysis from typical _qng-flutter or panel-

flutter studies. If no initial curwtture is present

as in the case of a straight beam, ho is considered

zero and consequently X is zero, and the differential

In addition

A
_2=02---- (lg)

40

Of 4= "" --40' (19)1C0"

"5<0<0 
I¢1>1ol J

(20)

Substitution of equation (16) into tile boundary

conditions (eqs. (A4) and (A5)) results in the
characteristic equation presented in table I.

Although as written in lal)le [ the determinant is

('?a function of 0, ¢, 5, a, A, and h0_ ' the parameters

¢, _, and _e can in turn be written as functions of

0 and A. (See eqs. (17) to (19).) Consequently
the determina,fl can be considered as a function of

only 0, A, and • For a given value of 3. and

('y.ho. the appropriate value of 0 can be determined

from the characteristic equation. The corre-

sponding wdue of a can then be computed from

equation (19).
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TABLE I.--FLUTTER DETERMINANT OF EXACT SOLUTION, WIIEN k=_ AND AERODYNAMIC

DAMPING IS NEGLECTED

svh(_l'C

q 1 +alll a[I_ 1 +alia aH_ I
(o,.+4,_) 20, (_-6_) -206 I

e 2° eoM_ 24,-- I e 2e sinh 24, e -28 cos 26-- 1 e --'e sin 26
llr, II6 tit Hs

1

(l :_ Or4 [ 2

23148(_) --1]

=0

II_=c2e[(O_ ] ¢2) cosh 2¢+204, sinh 24,]

4, 24,) -- 1e 2_ (cosh 2¢--_ sinh
Ill -- H_=e2e[(02-t-4,2) sinh 2¢+204, cosh 24,]

d_ (sinh 24,--; cosh 24,) +;

,,:= , (;)'
II:=e-2_[(0"---62) cos 26+206 sin 26]

Ila e 20( cos26+_ sin26)+l

,+G
11_ =e-_°[(O 2 6_) sin 26--206 cos 26]

c 2° (--sin 26--_ cos 2_)+ h
114 =-

,+('oy
4 A"
: 1_._ --,104

In figure 2 a plot, of the dynamic-pressure param-

eter A as a ['unction of the frequency parameter c_

(;0Yis shown by the solid curves for =0. For

discrete values of A an infinite set of wdues of c_

is shown to exist. When A equals zero, the wdues

of a correspond to the natural vibration frequen-
cies determined in reference 4 for a monoeoque

beam in a vacuum. As A increases from zero,

these natural h'equeneies change until a value of
A is reached in which two of the roots of a coalesce.

For v,dues of A greater than this value two of the

wdues of a become complex and hence, as e'm be

seen from equation (14), o_will be complex. Since

co must. remain real to give stal)le oscillatory mo-

tion, this value of A is the critical wdue A, and
thus defines the flutter boundary, hi figure 3,

(,y3_, is plotted as a function ot h0 from 0 to 0.25.

('yNote that ho for all practical configurations is

nmeh less than unity. For exqmple, in an extreme

ease where the sldn thickness is equ'd to half the

wdue of t_0, this ratio is only 0.25. In the more

practical type of construction of multiweh wings

such as those presented in references 1, 2, and 3

200

150

h I00

-I̧ ¸
-- Exact
---- Four-term Galerkin
--- Three- term Golerkin

I Ace `

l

l
i

o 2 8 =;o -= _2
o.

Iq(;_mE 2.--l':ff,'ct of dynamic-pressure parameter on pin-
/ Xt 2

en,h,d (/,'= _') wing frequencies for ['.)_a)

"'=\TRK) " _e\t/

(,)2the ratio h_ is in the range of 0.020. Con-

sequently, within lhe range of practical design of

,ho (;j
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(,)'Figure 3, Effect of variation in /i=. on A_, for exact

sohtl loll. k= co

can be assumed (o approach zero withoul appre-

eiat)ly affecting the wtlue of A_. For lhis reason

in the analysis performed I)y the GMerkin pro-
eedure in the next section, a cons(ant value of

(;/" 0 is used as this assumption results in con-

siderable sin)plifi('ation in the numerical coml)u(a-
(ions. Although, as was previously (]iseussed,

('yh0 fro' all practical eases is much h, ss than one,

a unique situation occurs in the limiting case

where the two crowed beams merge into a straight
beam. For tiffs limiting case h0 is assumed to be

9

zero and t h,,) -+co. It can he shown that for this

ease (he differential eqmgion and boundary con-
ditions (eqs. (1), (A4), and (A5)) limit to the

equations presented in reference 7 for the iufinile-

aspeet-ratio flat panel. The value of A. for

('y =co is 37.96 and is indicated in figure 3 inh0
order (o compare the effects of eross-seclional

curvature and its associated midplane forces whh

flat-panel results containing no in-plane I'orees.
Comparing this value of A. with that caleul,,tted

for- -_(t)"_h0 0 (A,=70.9) demonst,'ates that the

existence of curvature call |lave apprecial)le effect,

on the fluller criterion. However, as can be seen

from figure 2, once the curvature is present, varia-
(,ions in the degree of curvature ean have little

('fleet or! (he lhml flutter houndary.

SOLUTIONS BY THE GALERKIN PROCEDURE

The previous solution, although exa<'t, was ror

the special case of pin-ended constraint conditions

where k=¢o. In order to study the effect of
spanwise flexibility on the overall motion of the
idealize(t structure finite values of the elastic

supports must be used. Because of the resulting

complexity in the final (h'tern|inanl which occurs

in the case of an exa('[ solution, a Galerkin pro-

cedure using a theoretical modal approach is used
to detern|ine the flutter characteristics. As was

done in the exact solution, the effects of aero-

dynamic damping are neglected. The importance
o1' (his effe('t is (tiseussed in a sut)sequeut section.

In order to perform a Galerkin solution l)y a
modal approach, the choice of modes to be applied

must satisfy t)oth the geometric boundary con-

(litions and the natural 1)oundar 3- conditions.

Since the inclusion of the dynamic pressure q in

equation (1) does not alter the boundary condi-

tions associated with the elastic supports, the
mode shapes and h'equeneies of the vibrational

analysis of such siruciures derived in reference 4

are used in the Gah, rkin procedure. That is, the

deflection is represen ted b3"

j l

w=a0w,,.,+>2 a,w,,.s+ P, b,,,w,,,.._ (2J)
n=l m=(I

where w0,s, w,,.s, an([ w,,.A are (}|e symmetric
and ant|symmetric vibration modes. Note (ha!

the eoefticienls ao, a,,, and b,,, can be complex t)ut

We.s, w,,.s, and w,,.a are real. The mode shapes

w,,.s and w,,,,A and their assoeiated frequency
equations have been derived in reference 4 rot al!

wdues of [�'he. Examination of the equations

given in reference 4 shows that a significant sin>

plifi<'alion results when t/he approaches zero.
Inasmuch as (he exact solution has shown that

this simplifying assuml)tion would have no apt)re-

ciable effect on the resulting flutter boundary for
t/a0 is assumed to be zero, whereas c/l

remains finite. The frequency equation rot the

symmetrical case as obtaine(| from reference 4 for

h0 l

2c_,.s=tan _,,.s+tanll m,..s (22)

and the associated mode shape is written as

eos a,.s_ eosh oL,,.s_ 2 (23)
_V,,s-- {- eosh

COS O_n, S O/n, S
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where

( 3c'p_'. s_ '_' (24)
_",s=\ 4ES]

For the anlis)inmetricaI modes, as was pre-

viously discussed, the midt)lane force X is zero,

and tile differential equalion of vibration simply

reduces to the elenlentary beam equation. Thus,

the characteristic or frequency equation cat, be
written as

col tlm,,.A--cota,.,A _-3k (c) '_ (25)2a,n,a 4Ea,,,,a Ii

and the mode shape is

where

sin a,,.A} • sinh m,,. A_
W,,,.A-- si_ a,,,,,._ kSl]_h o_,",a

(26)

I/3C4pw_,a) 1/4oe,.,A--\ _' (27)

It can be sho_m by the use of the general mode

shapes given in reference 4 lliat regardless of the

('7wdue of ho , the nahwal vibration modes are

orthogonal for all values of k. Consequently,

f_ ((,.=0, 1, %... j)w,,,sw,,sd_=O (i_) (i=0, I o, j)

(2s)

fl w,,.sw,,.ad_=O { (n=0, 1, 2,... j) (29).j-i (m=0, 1, 2, 1)

_ f (i 0,1,2,...l)• ,w,,,.._w_.Ad_,0 (i#m) l_(m=O, 1,2,.. l)

(30)

Note from equal,on (23) that: for ho =0, the

tip deflections of the cross section in the s3qn-
metrical modes are zero and

f) w,,.sd(=O (n=l, 2,... j) (31)

and

f__ f_ ((n=l, 2, . . .j)wj.,_w.,fl_=- wm._w'fl_ On=o, 1, 2, l)
• 1 1 " "

(32)

hi addition, with the use of equations (23) and (26) the following relationships are obtained

__ '_ 2w',.sd_=tan a,,,s--tanh 2 a,,.s
• I

(n O, 1, 2,... j) (33)

f tw0' ad(=2+cot _ 2 . 4.5k' OoA- O,h (m=0, 1,2,... 1) (34)

I

. 8 n,S 2

w,,,.aw',,.s_l_= _ _.V- (m,,.a cotl, C_,,,.A--1)+-]£, -- i a_u_ _
I \Ogm, A I m,A n,SOtto, A--Ctn, S

06,, s tan if,, s"_

OLin, A--O/n, S ,,1

{ (re=O, 1,2 .... l)
(,_=o, l, 2, j)

(35)

The first niode, Wo,s, associated with (to in equa-

tion (21) is tim rigid-body transl'ttional mode

while w,,,a consists of predominantly rigid-body

torsiomd or pitching motion; that is, nmtion of

the cross section as a rigid body mounted on

spring supports. The rigid-body torsional mode

is always the lowest of the antis3mmletrical inodes,
while the rigid-body translational mode is not

necessarily the lowest, of the ssqnmetric modes.
673580--63----2

(See ref. 4.) The rest of the modes associated

with a,,. and b,,_ are predominantly cross sectional

in nature containing two or more nodal points.

By application or the Galerldn procedures and

use of tim siml)li Pying orthogonality relations given

lay equations (28) to (30) an(t equations (31) and

<Y(32) for =0, a set of equations fox" the

eoefftcicnts a,, and b,_ are found. The set of
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equations for the coefficients a,_ and b,,, are:

d - l '

(a., s-- a )_,, u,; ,fie -- A b,,, .<IE 0
.1 -I ' m=O ,,J I '= '

(aL,.,--cd)b,.. '_ ,' I" ""_,,,..td_ + A w,,. AZZ,.. s' _ u
I l

= I, 2,... {)
(m O, 1,2, .'.. t)

(m 0, l, 2 .... 1)
(.= 1,2,... ,i)

(30)

It can be seen from equations (36) thai (at least in the absence of aerodynanfic damping) lhe rigid-body

symmetrical (translational) mode w0.s becomes uneoul>h,(t in the solution. Furthermore, it can be

shown from equations (36) that if the expansion for w in equation (21) contains either all o:mnwtrie
or all aniisymmelrie modes, the resulting solutions do not yiehl an instability; hence, flutter occurs

only through the coupling of symmetric and anlisymmetrie nao<les. For a nont,'ivial solution, the deter-
minant of the coefficients lUtlS1 be equal to zero.

Three-term solution,--For a three-term approximation in which the rigid-body Ior_ional inode and

the first two cross-sectional modes are considered, the determin'mt of equ'_tions (36) reduces to

t

,_I

The variation of the frequency parameter c_

for finite values of the dynamic-pressure parameler

A can be obtained from equation (38) by choosing

values of. and solving for 3-. Equation (38) also

is a funclion of the wing material E, chord-

thickness ratio c/t, and the spring conslanI _: as

can l)e seen from the values given fot" the integrals

(eqs. (33) to (35)). Tn figure 2 a plot of A qs a
function of a is shown for the three-term Galerldn

approximation (by the long-short dashed curves)

for =0 and Ic=_o. As in the case of the

exact solution the critical value of A is the ]owest

value of A at which two of the frequency param-
eters oe coalesce.

The critical value of A, expressed in the form of

(as)

the often used lmnel flutter parameter t(Efl'] _/3
ckq/

(3_ '/s
=k]_f.}_. is shown plot ted in figure 4 as a function

of k, for an aluminmn-alloy (E--10.6X10 _' psi)

wing of chord length c of 20 incites 'rod a ratio elf

of 312.5. This ratio c/t was chosen as it corre-

sponds to the ratio for the multiweb wings used

in the experimental investigations. The effect of

varyin_ c/l on the final flutter boundary will be

discussed in a forflwoming set.lion. The region

above the eompute(l curve represents the region

of stability while the region below represents the
region where flutter will occur.

In order to convert the abscissa in figure .I to a

nondimensional form, the results of figure 4 were
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replotted as a function of the square of the

frequency ratio o_r/Cg.s in figure 5. The fre-

quency wr is the rigid-body torsional or pitching

Frequency of the idealized structure, whereas

Oh,s is the frequency of the first symmetrical
camber mode. The uncoupling of the rigid-body

transverse mode a.,,,,s motivated the choice of _o7,

for use in the nondimensional fi'equeney ratio.

Thus,
KT

'--l,iF--ff_[s 4 Ea_.s ,_ 3 (39)

opt

wh ere
,C_ 2

Kr=2k ,2, (40)

t 3

/=-- (41)
12

anti the approximale polar moment of inertia I x,

is given by

2tc _
[p _-.l_ =_-_ (42)

Note from the curves presented in figure 5 that

the lorsiomd beam stiffness of the prototype as

represented by _7. is relatively unimportant for

large values of +., ,m(1 fut'lhermore that flutter will

when +T is infit|ite (three-term solution,occur ovell

E ,/a )
t ('r_'_ =0.3485 . The reversal of the curve at
ckq

(:2)'7 =2.1 (or k=145) for the three-term Galer-

kin approximation is similar to th,_t occurring in
other solutions that use three-mode approxima-

lions such as flat-panel modal solutions as shown

in reference 7. For values or (c°r")2>2.1 l[le
-- /_1, ._.
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_ Lk i Lk .

Ii I :tl'i 4M
1t tt t_1[._t:.i I t tlJrl

0 I 3 4 5 6

Figure 5. Variation of the flutter pn.rameter, _c \q/(E#'_]:3 _ilh w"" s for E:10.axi0 _ pM and =312.5. _ 0.

criti('al flutter boundary is defined by the comes-

eenee of the rigid-l)o(l 5- torsional (first antis)ml-
metrical) and the first symmetrical ehordwise

mode while for ( w1,_2 ,) t the first s_Tnmetric
keel, s/ " _'

and second antis3mmletvieal ehordwise modes
x 2

(_coalesce. (See fig. 6(a).) As _Ls, is further

decreased, a point is reached at which the seeond

a]ltisym]netrie ehordwise frequency becomes equal

to the fh'st symmetric ehordwise frequency for

zero airflow; at this point it appears as though
flutter will occur at zero dynamic pressure. This

phenomenon is quite common in flutter investiga-

tions and is probably due to the negleeb of aero-

dynamic damping.

Four-term solution,--In order to investigate

the accuracy in the region of the curve revers'd

and also the convergence of the three-term approx-

imation, a tour-term Galerkin solution was per-

forme(1. For a fout'-term approximation in which

the lirst two antisymmetrieal ehor<twise modes

(one of which is pre(h)nfinanll3 _ rigid-body torsion)

,uld the first two synnneIi'ieal chor(Iwise modes

(the rigid-l_o(ly transverse 'rcio(le having become

uncoupled in the solution) are eonsi(tered, the

determin'mt of equations (36) upon expansion

re(|uces to a quadratic in A2. Solving for the
critical value of A 1)5, varying _ results in two

peaks, the minimum peak being A:_.

The correlation _be/ween these approximate

solutions anti the exact solution for the specific
case of pin-ended constraint conditions and

2

('_) =0 is shown in figure 2. The agreement

between the three- and four-term approximations

and the exact sobOioLz--is= exeellen{, the critical

flutter parameter being calculated as 70.,5 for

the three-term solulion, 70.72 for the four-torm

solution, and 70.9 for the ex-ac! solution. In [act,
the wdues or the curves as cah'ulate(t for the first

coalescing modes are so (,lose []lat the curves



CAMBERFLUTTER OF MONOCOQUE AND _,I'ULTI_,VEB WINGS 11

80
I

o

o0
, !

5 6 3 4

Figure 8. Dynamic-pressure parameter A as n

(a) Throe-term Galc, rkln soh tion.

function of a for various values of k wit.]l

(t.',l_=o _ ,, .
he} . -/=3t..o; E =10.6Xl0_l)si.

drav<n tlu'ough theni cannot be easily distinguished
one from another, "l't_e difference between the

exact t)eaks and the approxi.mate peaks becomes

evident only aL the higher co_esclng modes. This

agreement demonstrates the degree of excellence

in comparison between the approximate Galerkin

procedures and the exact solution for the special
case of infinite _'.

For tim case of finite/,." the rapid convergence of

the Galerkin procedures using only three and four

modes, as is shown in figures 4 and ,5, indicated

that the inclusion of more terms in the approxi-

inate solution was not necessary in order to obtain

accurate restll_s.

Now that the accuracy of t.he Galerkin pro-
cedure has been evahmted it is of interest to

examine more closely the behavior of the partici-

pating modes in the vicinity of the curve reversals

shown in figures 4 and 5. In order to illustrate

the change in coalescing modes, A has been plotted
an a function of a for different values of k in

figure 6(a) for the three-term approximation and

in figure 6(b) for lhe foul'-term approximation.

By following the sequence of plots in figure 6(a)
for different values of b it can be seen tlmt as tim

wllue of k varies the magnitude and shape of the
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6

(b) Four-tm'm G'dm'kin solution.

FTc, I _F_ 6. Concluded.

peak changes until different modes coalesce. As

was previously discussed the reversal of the curve

for the three-term approximation was to bc

(,xt)ccted because of the cubic nature of the ex-

panded determinant, as was demonstrated in fiat-

panel modal solutions. (See ref. 7.) The al)rupl

change in the curve for the four-term approximn-
2

lion shown in figure 5 occurring at [ ,Jr ) 1.93
\ col,s/

()_'----133) is somewhat surprising, however. This

abrul)t change for the four-term approximation is

due to the l.ype of modal coalescence illustrated

in the sequence of plots in figure 6(b). In figure

(i(b), as in figure 6(a), the wariance in /c causes a

change in the magnitude and shape of the t_ro

peaks until different modes coalesce. The eoales-

cence at wdues of / cot -12_1.93 occurs between
\_1, s/

the rigid-body lor_ional (first antisymmetrica|)

and the first symmetrical ('hor(lwise mode, and

between second symmetri('al and second anti-
symmetrical chordwise mode. When the value

of k &,creases until wT _1.93, then the rigid-bod.v
501., ,g

lorsional nmde coalesces with the second sym-
metrical chordwise mode and beneath this curve

the second antisymmetrica] and first symmetrical

chord wise modes coalesce, the smaller of thcse two

I)eaks yMding A_, as always.
Effects of variation in chord-thickness ratio.--

In the previous Galerkin procedures tile ratio of

the chord to the skin thickness c/t was held
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conslan! al 312.5, the value eompuled from lhe

physi('al characteristics of tile muliiweb wings

investigated itt l'eferences I and 3.
In order to show the effect o1' variance in the

ratio e/t on lit(, fluller criterion, values o1' c q)((Eft_ _/a

eompuled ['rom the four-lerm approximation were

(wT) _
plotled as n fun('lion of "_L._ in figure 7 for three

wdues of eft. The vah|es of e/t were laken 'is 500,

312.5, and 24(3.9, values eonsislen! with pra('ti('al

design considerations and within tit(, limits o[" the

present idealization for monocoque and tnultiweb

wings. An can |)e seen front figure 7, very liIlle

effeel is noted in the flutter boundary caused I)y

variations in c/t.

Fffects of aerodynamic damping.--|. 1)()tt_ the

exqel atmlysis and in lhe Galerki|_ approximations

aerodynamic damping has been neg'Iected, The

damping term was neglected in the exact anMysis
in order iha( a siml)lified solution to the differen-

ti,1 equation could be found. For tit(, Galerkin

approxim,lions, however, the inclusion of the

aerodynamic damping term does not create any
(liffwulties. Ttn,s, the efl'eet of 'wrodynamic

damping on the critical flulter part|n|eter has been

investiga(ed for the limiting conditions of pin-

ended (k--_,) an(l free-free (k--0) eonslraitlts by

using a Galerkin modal approach.

A lwo-lcrln Oalerkin approxin|alion (which in

idenlit'al lo l]te l]tree-ltTln approximMion at k----0)

was eml)loyed for tilt' sake o1' simplMty, sine(, the

choice el' the proper coupling modes has ah'eady
been es(ab]ishcd. It is assumed therefore that

the (,ritieal coupling modes do not change wilh the

inehlsion of aerodynamic damping and that only

life magnilude of the critical A is ,tffe('ted.

1,0

.9

.8

.7

,6

, (se) '/3
7 k-_-/ .5

.4

,3

.2

_I I

r --

+_ ..... _

\

I

__--+ _
I

/

Fig[fro 7,-- _t,r,%t'iIt,,loll or let,/_a{,"|' ][)/,FIR/,G']Q{,(IF-f "(lt//(EJ/_N) I'/3 'VJtl| ¢01,,_

C

for various values of -/ with

/{)'=0 and E::: 10.6× 10_psi.
0
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Tile detennintmt of the coefficients (which ,,re
now complex) for the two-term Galerki,r approxi-
marion reduces to

Ot 4 i_,I 2( ,,,_+ ) d_

r;' f_ I=4 I ,2

(%,A+B ).I-_ I

(43)

where B Lis now COmlllex and is given by equation
(13) and w,,,s and W,,.A are the general vibration

('Ymodes for IT0 _0.

For k=._, the first antis3nnmetrical (rigid-body
torsional, m----0) and the _rst symmetrical chord-
wise (n = 1) modes shouht be used in equation (43).

For k-:O tile first antissanmetrical mode is zero
and uncouples from the solution; tile second anli-
symmetrical (re=l) and the first s3qn,netrical
chordwise (n-- 1) modes shouhl be used in this case.

If B 4is complex and ¢ois considered real, expand-
ing and simplifying equation (43) and equating
tile coefficients of both the real and imaginary
paris to zero yiehls tile following expression for' A_:

1
0!4 _4

l_ 2[ 4 4 2 0 ' _ 4 4 "2+_n (o_.,s+a,,,,.4) +l-bK_(a.,s--a,,,..d ] (44)

\v]lere

.=_ \Up Hz_-1 (4s)

a[ld

K o4.s f
O' n, S -- at m, A

L
Olin, ,Ir ,ii ,([i,]_';'"_(h!o')'+lJ / --_ (;0)_-l-1L 4s

[ ' +;]})a., s l--a,,, 4 coth+o& _ ., .. %.a ,

-5-_ tflll2

(

In order to arrive at numerical results of the

effects of aerodynamic damping on the flutter
parameter A in the present investigation, the data
from tire flutter failm'es of the multiweb-wing
structures were used. The pertinent parameters
used in some of these tests are tabuh_ted below:

P®--0.0001453
P

E 10.6X10" psi

M=3.0

m's--tanh2a"s-_2-F_4"24S t ] -I-1 [ (i) ]}' ' s/" t " '2 3---4 2+1
48 .

The results obtained by using the tabuhtted data

(5 :oin(ticat(_ that for k=0 and (al,s--4.591"

re.A=3.927), the effect of aerodynamic damping
increases Ae by only 0.3 percent. If the actual

(t7)to value of 0.0187 is used in place of the

[ \"/" 2

approximation, __t.)l,_):0, the results are not al-

tered; the increase in A_ is still only of the order
of 0.3 percent.

When/t'--- oo and ()! X}, 0 (al,S=4.5,01 " ao,.4.: W),
\Ito /

the effect of aerodynamic damping on A. is still
negligible, the value of A. being increased by only

0.'2. percent. A gre.tter effect would be realized in
these limiting cases, however, if the c/t ratios
increased, as can be seen from the density-ratio
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faelor rj in equation (45). Note that tile effects

of damping have been studied only for the limiting
cases of/c= 0 and k= oo. It is nevertheless 1)elieved

that tile conclusions based on these cases are

applicable for finite values of k except in tlte

quest iomdfie region of (c07--)_- _ 0.35, where flutter
\ wL x/

appears lo occur for negligibh, air flow.

APPLICATION OF METHOD

The previous sevtions discussed the flutter be-

havior of an idealized structure. The purpose of

the present section is to show how these results

can be used _o predict the flutler boundary of the

multiweb wings used in the experimental invesli-
galions. In addition, the aeeur_tcy of lhe predicted

flutter boundary is ascertained by comparison with
actual flutter data.

TEST SPECIMENS

In lhe experimenlal invesligalion into the dy-

namic fluller failures of muliiweb-wing structures,

a series of multiweb wings were tested in the pre-

flight jel at the NASA Wallops Station at a Math

number of 2 (see refs. 1 to 3) and in lhe Langley

9- by 0-foot thermal structures tunnel at a _Ia('h

number of 3. Specimen idenlification (see table

II) conforms with lhat of the nmltiweb-wing

Math

IrodeI nl_m her

MW-2-(2) 1.90

MW-2-(2) I. 9.q

MW- 2-(2) 1.99

MW-2-(21 1.90

MW-2 (2) 1.99

MW-2-(2) 1.99

MW-2-(4) 1.00

MW-I (3) 1. !/9

MW-4-(41 3. O0

MW 4-(5) 3. O0

MW-4 (5) O0

M_V-.I-(6) 00

3 [ W-4 - (6) O0

MW-4 (7) 00

MW-4 (9) 00

MW-I-(2) 99

MW-23 00

MW-24 00

(_[W) series previously discussed in references 1

to 3. Numbers within parentheses indicate dul)li-

cares of the same specimen. For example, MW-
2-(2) identifies the second .XI-W 2 model tested.

These aluminmn-alloy (E=10.6X10 _ psi) muhi-

web models had 5-percent-thick ('ireulav-.n'e air-

foil sections with solid leading and trailing edges

as shown in figure 1 (a). The chord length of 15

of the lS models tested (models ._IW-2 and X IW-4)

was 20 inehe_ and tim skin Hfickness l, 0.064 inch;

thus the ratio c/t for lhese specimens was 312.5.

These models had a 20-inch span (approxinlately)
with solid root and tip lmll_heads but were free of

internal ribs. (The mo<lels <tesignale<l MW-2 had

0.25-inch tip bulkheads and lhose desigm_ted
MW-4 had O.025-ineh tip bulkheads.) The pa-

rameter ho was 0.01S7 and the wing aspect ratio

slightly over 1.0.

The las| three muhiweb models listed in table II

(designated MW 1-(2), _I_V-23, and M_V-24) are

presented in order to eompare the theoretical flut-

ter boundary with multiweb nIodels of different

chord length and sldn thickness from those of

models MW 2 and MW-4. The ratio c/! of these
multiweb models, however, is quite similar lo that

of models MW-2 and MW-4 (e]l=320 to eft=312.5

for MW-2-(411. Model MW-I-(2) (from ref. 2)

TABI,E II.--AEI_ODYNAMIC TEST CONI)ITIONS

[p=0.000259 slug/cU in.]

Sl agnal ion
_,i'H porfil IIr0_

o F

89

540

503

517

47-1

525

551

531

651

301

395

502

608

673

659

574

647

656

V('loci( y,
U, fps

1, 70(1

2, 300

2, 260

2, 280

2, 230

2, 200

2, 3t4

2, 288

Air d,,nsity,

p_, slugs/ell ft
lt)'sq in.

Flutt(,r

0.003610

002290

002320

002300

002380

002300

002220

002280

36. 40

42. O0

41.10

41.50

-10.90

41.80

41.44

41.58

Vos

Yes

Yes

Yos

Yes

Yes

Yes

Yes

Reforonees

028

423

369

727

87t

961

943

350

923

935

001095

001640

001123

001315

001183

001140

000786

002120

0011-10

001077

32, 62

33. 49

:32. 62

33. 80

33. 89

34. 71

23.62

40.60

33.82

32. 24

Yos

No

No

No

No

g{'s

No

g('s

No

Yes

l'nl)ublished data

Un pul)lislwd dat'i

l'nl)ublish('d data

lr|)pul)lishl,d (lMrt

l'npublish('d data

l'npublishpd data

l'npublish(,d data

2

Unpublished data

Unpublished data
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has a 40-inch chord, skin thickness of 0.125, tip

bulkhead of 1 inch, and a span of 37.50 inches.
Model MW-23 has the same dimensions as MW-

1-(2) except for a tip bulkhead of 0.051 inch and
a span of 43.25 inches. Model MW-24 has a

60-inch chord, skin thickness of 0.I88, tip bulk-

head of 0.073 inch, and a span of 64.88 inches.

The ratio h for the three models is 0.0178

(al,s=4.568) and the wing aspect ratio is approxi-

mately 1.0.
Tabuluted in table II are such pertinent param-

eters of the experimental tests of these models as

Mach number, stagnation temperature, velocity

and density of the jet stream, and dynamic pres-
sure. Whether or not flutter occurred is indicated.

The put)lished references from which data were
obtained are listed in case more information is

desired.

EXPERI'MENTALRESULTS

Although all the multiweb wings had 5-percent-

thick circular-arc cross sections, the curvature of

'°Ii .... !i

0 I 2

AERONAUTICS AND SPACE ADMINISTRATION

these cross sections can be very accurately ap-

proximated by the parabolic equation h----h0(l _2).
Furthermore, the ratio c/t of the MW-2 and MW 4

multiweb wings is 312.5 and thus the theoretical

flutter boundary presented in figure 5 (for the

four-term approximation) is the predicted flutter

boundary for 15 of the experimental models and is

again shown in figure 8. in figure 8 are also shown

the experimental flutter points tabulated in table

IlI for all the MW models. (Note from table ]Ii
and fig. 8 that some of the flutter points fall in

such close proximity to each other that they are

not easily distinguished.) In order to tabulate the

experimental flutter points the wdues of the first

torsional frequency wr and the first s31nmetrical

chordwise frequency _,s must be known. The

first torsional frequency wT was determined ex-

perimentally and is listed in the first cohmm of
lable ill. The constant wflue of Wz,s was deter-

mined from equation (24) once aj,s was found

front the general ssnnmetrical frequency equation

(given in ref. 4 for any value of (]_)2) to be 4.566.

__0 No flutter -- --

e F'lufter --- _

:-

FIGVRE 8. Comparison of theoretical flutter boundary with experimental data. c/t 312.5.
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TABLE III.---VIBRATION CtIARACTERISTICS FOR FLUTTER SPECIMENS

[p =0.0(D2,59 slug;'eu [n.]

.Model wr, exp. 1,,, in. s k, lb/in. _ c\-q/

17

_,[w-2-(2)
MW-2-(2)

Mw-2 (2)
MW-2-(2)

MW-2-(2)

MW-2-(2)

MW-2-(4)

MW- 4 (3)
MW-4-(4)

MW-4 (5)

MW-4 (5)

MW-4 (6)
MW-4 (6)
Mw-4 (7)
MW 4-(9)

MW-1-(2)
MW-23

MW-24

139

139

139

139

139

139

147

149

145

142

t42

143

143

144

144

74

76

54

98.135

98.135

98.135

98. 135

98.135

98. 135

98.135

98.135

98.135

98. 135

98.135

98.135

98.135

98. 135

98.135

1737. 91

1525. 53

7798.21

92. 76

92. 76

92. 76

92. 76

92. 76

92.76

103. 77

111.39

105.49

101.17

101.17

102.60

102.60

104.04

104.04

121. 62

112.62

129.17

1.3824

1.3824

1.3824

1.3824

1.3824

1. 3824

1.5465

1.6600

1.5721

1.5077

1. 5077

1. 5290

1. 5290

1.5505

1.5505

1.9428

1 799O

2. 0468

0. 2542

2423

2441

2433

2445

2427

2434

2431

3111

3084

3111

3072

3072

3047

3465

2393

3002

3058

The spring constants ]c were computed from the

first torsional frequency by the well-known rela-
tion

wr_=_i_ (47)

where Ifr is the torsional spring" constant and ]-p
is the polar moment of inertia per unit length in

the spanwise direction. From equation (40)

Thus

k =2Wv]p[" (48)
c 2

As can be seen front figure 8 tt,e predicted

flutter boundary and the experimenlal flutter

points agree quite well. Some of the experi-

mental no-flutter points do fall slightly below the

flutter boundaI3 _ in the flutter region, but it is be-

lieved that this may be due to lhe omission or

temperature considerations in the calculated

flutter boundary. The heated air of the lest fa-

cilities produces a Iemperature gradient between

the skin and webs of the multiweb model inducing

thermal stresses. No attempt has been made to

include these thermal stresses in the present amd-

ysis. (The inclusion of thermal effects would

necessitate apt)13qng another set of dastic re-

straints horizontally, at the leading and trailing

edges of the wing cross section, fig. l (b), since the

edges are assumed to remain stationary in the

present analysis.) ttowever, the magnitude of
the effect of these thermal stresses on the flutter

behavior of the nmltiweb wings is nol too evident
from a comparison of the experimental data and

the theoretically predicted flutter boundary.

CONCLUDING REMARKS

The flutter <'haraeteristics determined from an

idealized model have been used successfully to

predict camher or cross-sectional flutter behavior

of actual multiweb and monoeoque wings of low
aspect ratio. The use of modifie<l piston theory

for the air loads in the flutter analysis yiehled

flutter results thai _greed well _xilh existing ex-

perimental data. An approximate three- and four-

term Galerkin procedure utilizing (he exact modes

and frequencies of the vibra!i(mal anqlysis of l]wse

nmltiweb wings was employed to estal)lish the

flutter boundary. The con'elation between this

approxim,de solulion and an exact solution for the

speeific case of simp]3" supporl(,d end constraints

in(lit'a led that the inclusion of more terms in the

approximate modal solution was not necessary,

the three- and four-term approximations being
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wilhin n few percent of the exa<'[. This agree-

ment was also borne out l)y the nH)id convergence
of the Galerkin procedures ['el" tile three- and four-

lerm approximations.

The exisIence of curwdure in n wing cross sec-

tion wns shown to have an appreei_d)le effet't on

the flutter criterion. Once the curvature is pres-

ent, however, varint ions in the degree of curvature
were shown to have liltle effect on the flutter

boundary. The eire('ts or aerodyn_mfie damping

on the tlutter 1)ound_lry were invesiignled for the

limiting eases of );'=0 and k= = nnd found to be

negligible.

The influence of thermnl stresses arising in the

multiweb-wing slru<'ture due to henling or (he
skins by the hot-air jel have nol been considered

in the presenl nnalysis, }}.tlIa comp_:rison of the

experimenUd (lnta with the theoreli(mlly predict ed

flutter boundary did not indicate lhe results to

be unduly affected by thermal slresses.
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APPENDIX

EXACT SOLUTION OF DIFFERENTIAL EQUATION FOR k= ¢o AND AERODYNAMIC DAMPING NEGLECTED

An exact solution to equation (8), as given in

the text, can be oblained directly by neglecting

aerodynamic damping. Ill a manner similar to

that employed by tledgepeth in reference 6, an
exact solution is obtained for the limiting ease of

pin-ended constraints (k=_)at the leading and

trailing edges of the cross section. With aero-

dynamic daml)ing neglected, B _ reduces to --c_ 4and

equation (8) can l)e written as

,,. , -- _iXh0c: (A 1)
, +Aw --a 4w Et 3

Furthermore, the origin o1"the coordinate axes is
moved to tile leading edge o1' the cross section both

to aid in a later comparison with the infinite-

aspect-ratio simply supported plate and to simplify

somewhat the form of the solution to equation

(A1). Thus

_= (+ 1 (A2)

and the expression for the half-del)th h can be
written as

t, =/,0 [_ - (¢- t) _] (Aa)

The associated boundary conditions for the pin-
ended const rain ts become

w(0) = w (2) -- 0 (A4)

The normal midplane force X is considered con-

stant and equal to the average midplane force as

given by equation (15) or, since w(0)=w(2)- 0,

simply reduces to

4/,oEt _: _,d_ (At,)
X c_ Jo

The sohltion to equation (AI) can be written in
lhe form

w---a_Et a -- _--I .l+,e (A7)

where m, (for p=l to 4) _re the roots of the

auxilia W equation

m _+ A m-- a 4=0 (AS)

Since cois considered real, a_ is ,flways positive and

A is always positive by definition; hence, m has
one possible real positive root and one possfl)le

real negative root and a pair of complex roots,

or two pairs of complex roots.

Let

m,=o+_ "1
m, .--o 4,.k
m3='y+ _a[ (A9)
m4 y--i63

In order for these roots (eqs. (Ag)) to satisfy
equation (As), the following equations must be
true

ml + m2+ ms-T- m4--0 (A10)

mlm2+mam4+(m,+m2)(ms+mO=O (All)

m,m_(m_+ mO + m_m_(m, + m_) = -a (A 12)

m, mamam4 = -- o? (A 13)

By substitution of the relations for m_, m2, ma, and

m, given in equations (A9) into equations (AI0)

to (A13) the following relationships between T, 8, ¢,
and 0 are found:

_,= --0 (A14)

a_= ¢_-F 2o2 (A 15)

2o(¢ _+ _) = - A (A 16)

(0_- ¢_) (02+ £) = -- a' (A 17)

By inspection of equations (A14) to (A17) it c_m
be seen that

0_.0 _ (A 1g)
',¢1>101./

while from equation (Al7) the possibility of two

pairs of comph, x roots is eliminated. Sul)slitu-

lion of equation (A15) into equations (AI6) and
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(A17) yields, after some algebraic manipulation,

ill.

_b2= -- 02 (A 19)
40

and

06+1 _2 (A2o)

]n equation (A20), 02 has one positive real root

and two conjugate complex roots, llowever,
interest is centered in the ease where 0 is real and

negative (eq. (A1S)); hence 0 -_is real ,rod positive.
Substitution for 4 2 fi'om equation (A19) into

equation (A15) yMds

A

8_=0" -- (A21)
4O

can be x_Titten as

6Xh.od d_eO_( G eosh _+G sinh 4¢)
W= a4_t 3

+e -°_ (Ca cos 8¢+G sin _¢) (A22)

Substitution of the general solution (given by eq.

(A22)) into the pin-ended boundax T eon(titions
(eqs. (A4) and (A5)) yields the following set of

equations for the coeffMents G, Ca, Ca, and ('_:

6Xhoc_
a4Et _ [-C,÷C_=O (.123)

6Xhod/_Ge20 cosh 24_d-C2e _'°sinh
cdE ta

Therefore, for the flutter analysis, equation (A7) -kGe -20cos26-lGe -2°sin26=0 (A24)

1

G (02+ q_2)+ Ca204,+ G(0 =- a2) -- G20a -0 (A25)

Cd(02+ q_=)e2° eosh 24_q-20q_e =° sinh 2q_]q C.,[204_e_° eosh 24_+ (02d-4_=)e2° sinh 24_1

d-Ca[(O2--8=)e -2° cos 2a-k20ae -20 sin 28]-C412Oae -_° cos 28--(02--_)e -_° sin 26]-0 (A26)

where X is written as

(re"°( ,'°sh '_,, -q_-0-rbsinh2qa)--l]q_Ca[e2°(si"h2qa--_c°sh2_)d-_ 1"*'"'q "U.... '-(;)' J
Et:_aU L

For a nontrixqal solution the determinant of

the coefficients must equal zero. Substitution o[' X

given by equation (A27) into equations (A23) and

(A24) and sut)sequent simplification yields the
determinant or the coefficients in terms of 0, _, 8,

(,)2/ilo ' a4' and A as shown in table I.

Note that if the half-depth h is equal to zero

everywhere (he=0), the parabolic airfoil reduces
to a flat beam and a in table I becomes zero. This

nmdified determinant, when expanded, will yiehl

an expression which is identical to that fox" the

infinite-aspeet-ratio simply supported plate solved

exactly in reference 6.
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